Making data access easier with OPeNDAP

```
James Gallapher (OPeNDAP<sup>TM</sup>)

Duan Beckett (BoM)

Kate Snow (NCI)

Robert Davy (CSIRO)

Adrian Burton (ARDC)
```

Outline

- Introduction and trajectory (James Gallapher)
- OPeNDAP at BoM (Duan Beckett)
- OPeNDAP at NCI (Kate Snow)
- OPeNDAP at CSIRO (Robert Davy)
- Discussion and conclusion (Adrian Burton)

Making data access easier with OPeNDAP

James Gallagher

Thanks to Dave Fulker and Peter Fox

Outline

- Definitions
- About the protocol (aka Web API)
- Servers that implement the protocol

October 2018

Distributed Oceanographic Data System (DODS)

- ➤ Conceived in 1993 at a workshop held at URI.
- ➤ Objectives were:
 - to facilitate access to PI held data as well as data held in national archives and
 - to allow the data user to analyze data using the application package with which he or she is the most familiar.
- ➤ Basic system designed and implemented in 1993-1995 by Cornillon, Flierl, Gallagher, and Milkowski with NASA funding.
- From 1995 to 2003 it was extended with NASA, NOPP, NSF and NOAA funding.

October 2018

Some Definitions

DAP = Data Access Protocol

- Model used to describe the data;
- Request syntax and semantics; and
- Response syntax and semantics.

OPeNDAP

- The software;
- Numerous reference implementations;
- Core/libraries and services.

OPeNDAP Inc.

- OPeNDAP is a 501 c(3) not-for-profit corporation;
- Formed to maintain, evolve and promote the discipline neutral DAP that was the DODS core infrastructure.

4

Some Definitions

Syntax

- The computer representation of a data object the data types and structures at the computer level; e.g.,
- T is a floating point array of 20 by 40 elements.

Semantics

- The information about the contents of an object; e.g.,
- T is sea surface temperature in degrees Celsius for a certain region of the Earth.

Considerations with regard to the development of OPeNDAP

- Many data providers
- Many data formats
- Many different client types
- Many different semantic representations of the data
- Many different security requirements

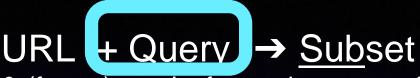
OPeNDAP

Fundamental Concept

- URL ≈ dataset* | URL with constraint ≈ subset
- Retrieve dataset descriptions (metadata)
 dataset content (typed/structured)
- Retrieval protocol employed in many packages
 - flexible data typing arrays (~coverages) tables (~features)
 - many, diverse clients

*dataset ≈ (file/granule | collection)

OPeNDAP Datatype Philosophy


- Every dataset is a collection of variables
 - Variable: name, type, value(s) and attributes
 - Attribute: name, type and value(s)
- ★ Internal data model has few data types
 - ¥ For simplicity...
- Types are domain-neutral but flexible
 - ★ Structures & attributes ★ rich syntax & semantics
- These types support many domain-specific needs

URL ≈ dataset* per OpenDap's Data Access protocol (DAP)

http://laboratory.edu/device/experiment/granule.d Each URL Suffixes Domain name often is Servers often have references a specify an organization's web sephierarchical sep distinct DAP sereturn collections. server. "dataset." types. Depending on suffix, DAP returns metadata or content, with options for human- or machine-readable forms (XML, NetCDF4...). Suffix "dmr" > metadata only.

*dataset ≈ (file/granule | collection)

October 2018

& (future) results from other server functions

http:/.../granule.nc4?dap4.ce=constraints&dap4.func=fu

nctions

Dataset identifier as above, except return-type is NetCDF4 (= HDF) DAP "constraint expressions" yield sub-arrays & other proper subsets

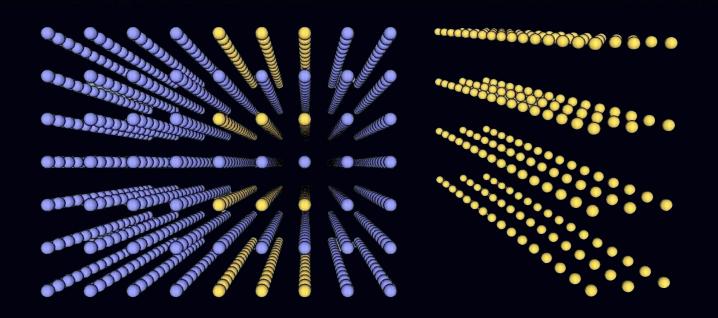
DAP4 "function expressions" enable extensions

Constraints specify subsets by variable names, by array indices & (for tables)

by

content. Likely extensions include statistics, UGRID subsetting, feature extraction...

The query form &dap4.func=... enables DAP extensions \Rightarrow new <u>server functions</u>


October 2018

DAP-based

Subset Selection (from arrays | tables)

- Select variables by name
 - **★** For tabular data, this means selecting columns
- Select rows of a table via column-specific value constraints
 - Allows both domain-based & range-based subsetting
- Select sub-arrays by constraining their indices

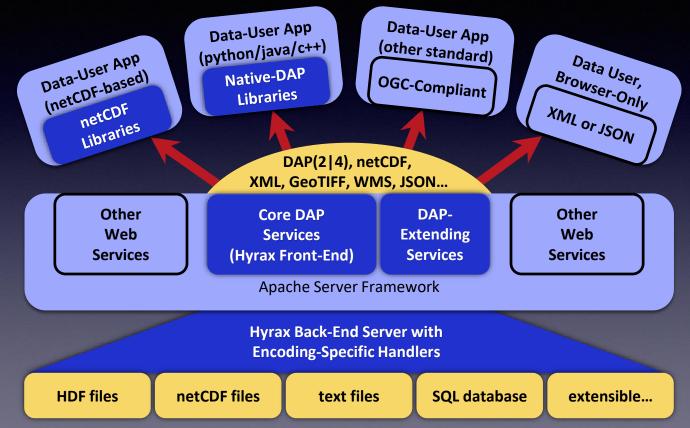
(array-style) Index-Constrained Subsetting

Input Source Array → **Output Sub-Array**

caveat —

Index-Based Subsetting

- ★ Excellent if desired subset is a bounding box parallel to source array (indices ⇔ coordinates)
- Less useful when
 - Subset selection not based on domain coordinates
 - Source is not organized as <u>coordinate-mapped</u> arrays
 - Desired subset is polygonal or is skewed (relative to source-array orientation)


There are several different DAP servers

- Hyrax, developed by OPeNDAP, inc.
- TDS, developed by Unidata
- PyDAP, developed by Roberto De Almeida
- ERDDAP, developed by NOAA
- Others...

October 2018

Architectural Overview of Hyrax

a widely-used DAP server

OPeNDAP services Can Function as Middleware

- → Plugin-like handlers ← multiple ingest encodings
 - **★** Hence a *growing* set of source-data types
- **➤** Data output ⇒ <u>multiple</u> response encodings
 - Native DAP—useful in Python, Java, C/C++, Fortran...
 - netCDF3/4, GeoTIFF Jpeg2000, ASCII/CSV
 - XML (⇒ HTTP via style sheets)
 - Recently added: WMS, W10n, WCS, CovJSON

New(er) features in Hyrax

- Authentication (NASA Earthdata login)
- User-specified aggregation
- Cloud-based data stores

For more information

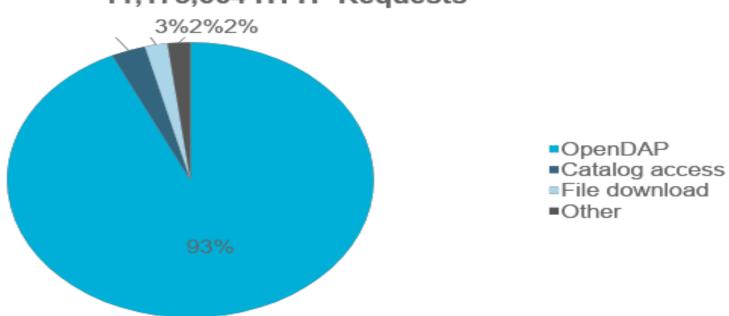
- www.opendap.org
- support@opendap.org
- jgallagher@opendap.org

OpenDAP and THREDDS A web developers perspective

Duan Beckett 03 96168397 duan.beckett@bom.gov.au

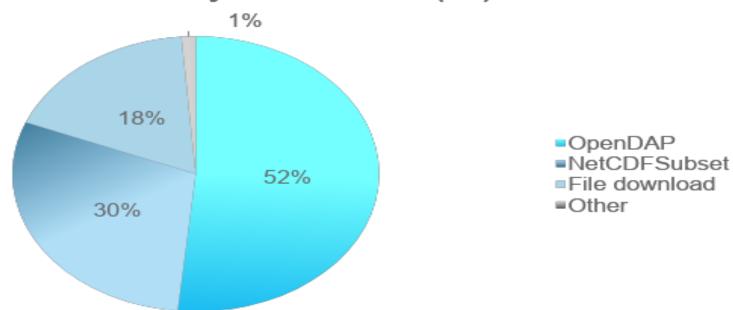
Background

The Bureau maintains several THREDDS servers

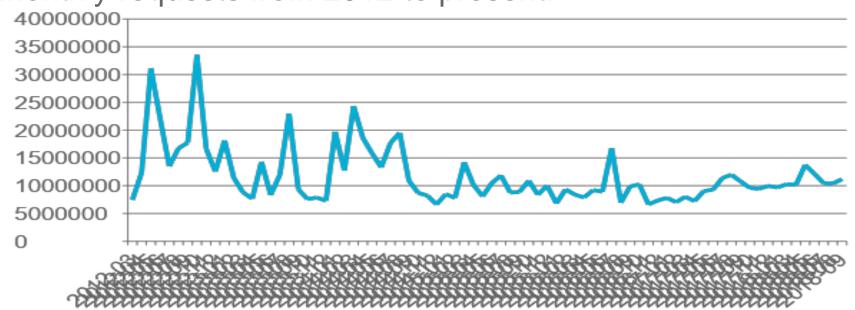

I develop web application on top of THREDDS – OpenDAP and NcWMS

Would like to share some views from this experience

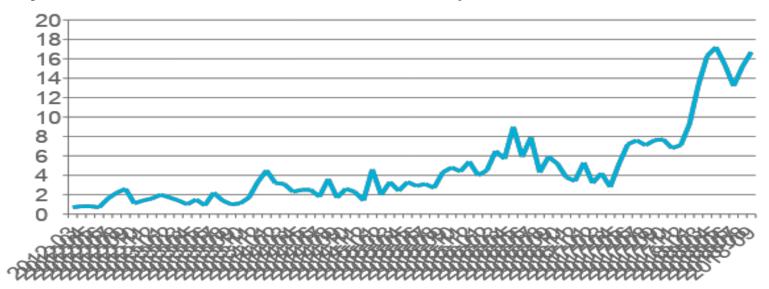
Stats for September 2018


11,173,664 HTTP Requests

Stats for September 2018

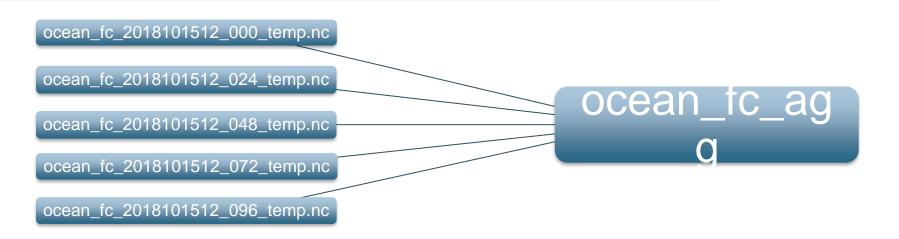

16.7TB Bytes transferred (TB)

Stats


Monthly requests from 2012 to present:

Stats

Monthly TB transferred from 2012 to present:


Web development

- Two very beneficial features of THREDDS for web development are:
 - Ease of deployment
 - Ability to create aggregated datasets

- What is a THREDDS aggregation?
 - A virtual representation of a collection of files as a single file
 - Creates a single entry point to data

Web development

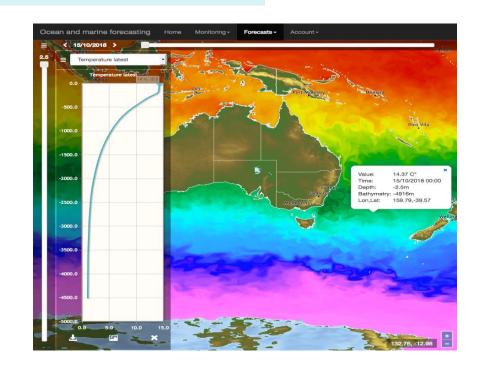
Request for i.e. time dimension, can now be simplified to a single request:

http://thredds_url/dodsC/ocean_fc_agg.ascii?time

Web development

Services leveraging THREDDS:

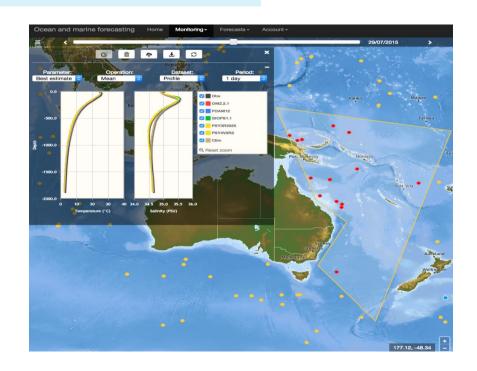
- Operational ocean forecasting
 - Bluelink verification site
- Atmospheric transport modeling
 - TAPPAS/Spread
- Data compression application



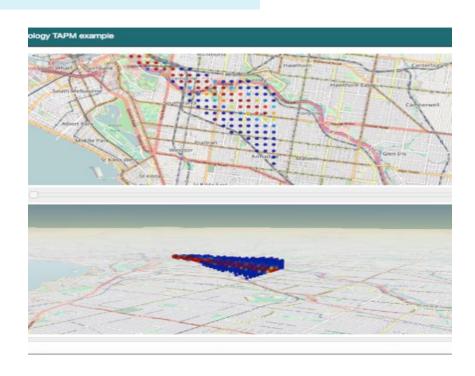
Bluelink verification site part 1

 Displays multiple ocean datasets in map viewer (WMS)

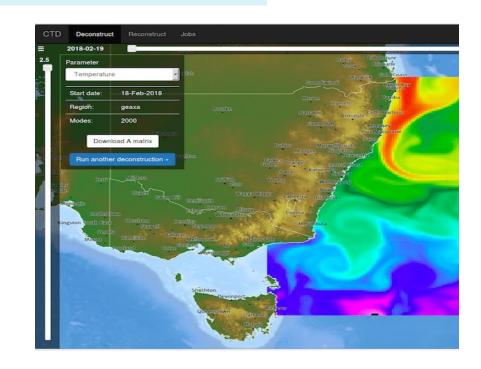
 A growing number of server side processes


 Benefitted from using aggregated datasets in development

Bluelink verification site part 2


- Monitoring of Argo floats in the oceans
- A large number of server side statistical features
- Data not aggregated
- Aggregation was simulated via regular scans and database
- Increased development time

TAPAS/Spread site


- Models wind dispersal of pathogens using atmospheric model data for a run
- Pointing to several different datasets via OpenDAP
- Benefitted from accessing remote datasets

Data compression site

- Ocean forecast compression application
- Uses instance of THREDDS for visualization (WMS) and interrogation of data (OpenDAP)
- Benefitted from ease of deployment as deployed as a Docker image

Final thoughts

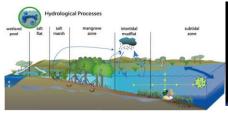
- THREDDS and OpenDAP are very powerful tools to build interesting applications off
- Data discovery vs web development
- From data providers I would like to see more use of requesting aggregating datasets for ease of development

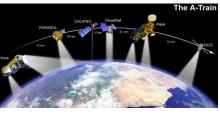
THREDDS wish list

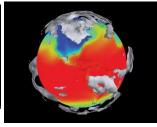
- JSON response from an OpenDAP call
- Ways to update/modify aggregations and documentation of how aggregations work behind the scenes
- Update individual catalogs
- Ways to mitigate the impact of outside users overloading the server

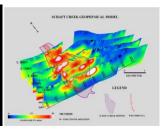
Thank you...

Duan Beckett 03 96168397 duan.beckett@bom.gov.au

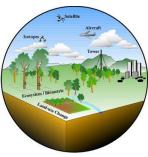

OPeNDAP at NCI

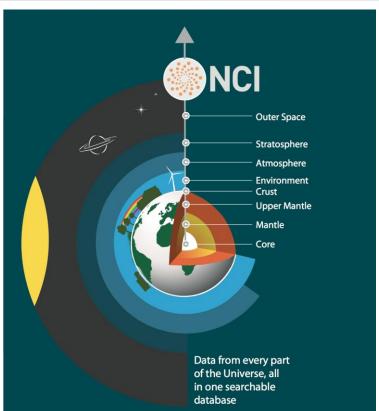

Kate Snow, Kelsey Druken, Ben Evans



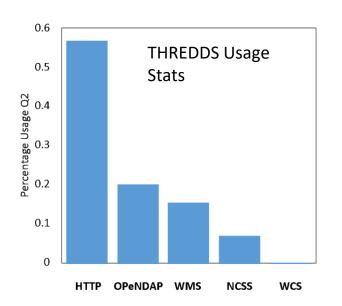

Data at NCI

NCI makes available national reference datasets – especially those produced by the government agencies and the universities. A range of communities and data collections make use of OPeNDAP at NCI.





- climate and weather models
- satellite images (Himawari, MODIS, LandSat)
- MT Data
- bathymetry and elevation
- hydrology
- geophysics
- Also: optical astro, genomic and social sciences


- Within these disciplines, data span a wide range of:
 - Gridded
 - Non-gridded (i.e., trajectories/profiles, point data)
 - Coordinate reference projections
 - Resolutions
- Collections are being accessed and utilised from a broad range of options
 - Direct access on filesystem
 - Web and data services
 - Data portals
 - Virtual labs
 - Virtual desktop interface (VDI)

THREDDS Data services overview

THREDDS (Thematic Realtime Environmental Distributed Data Services) data server (TDS) developed by Unidata (UCAR) allows for browsing, downloading and programmatically accessing data.

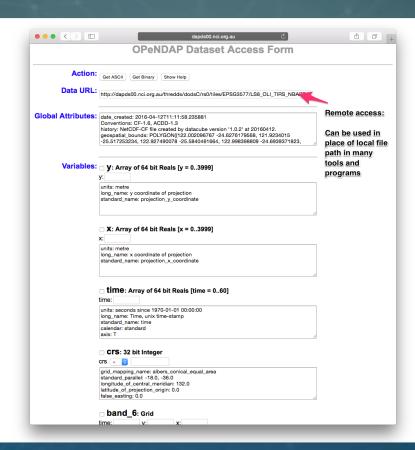
Name	Description
OPeNDAP (DAP2)	Protocol enabling data access and subsetting through the web
NetCDF Subset Service (NCSS)	Web service for subsetting files that can be read by the netCDF java library
Web Map Service (WMS)	OGC web service for requesting static images of data
Web Coverage Service (WCS)	OGC web service for requesting data in some output format
HTTP File Download	Direct downloading

How we use OPeNDAP and why?

- At NCI we serve OPeNDAP as part of THREDDS
 - Provides other web service endpoints important to our user community.
 - NetCDF/HDF5: most common data formats at NCI.
 - File aggregations.
- Other OPeNDAP options:
 - Hyrax
 - NCI have had a server in the past and its mostly similar to THREDDS.
 - It doesn't cover all user web-services.
 - ERDDAP
 - Shows potential advantages such as a database search interface.
 - Need to consider resources to provide support for such an additional service.
 - PyDAP
 - Popular stand-alone python server

OPeNDAP Application: Tools

Popular tools use OPeNDAP:


- Python libraries
- F
- MATLAB
- Panoply
- QGIS
- Ferret
- CDO
- NCO
- NCL
- ncview
- ncdump
- .

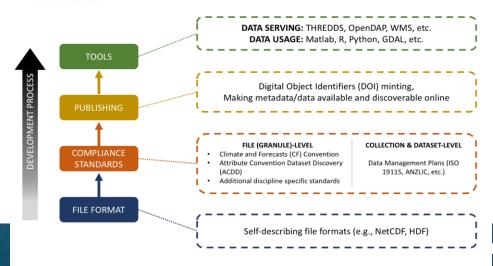
NCI Data Quality Strategy (DQS)

Data Quality Strategy (DQS): What does it involve?

- 1. Underlying HPD file format
- Close collaboration with data custodians and managers
 - Planning, designing, or reassessing the data collections
- Quality control through compliance with recognised community standards
- Data assurance through demonstrated functionality across common platforms, tools, and services

Informatics 2017, 4(4), 45; https://doi.org/10.3390/informatics4040045

Open Access


Article

A Data Quality Strategy to Enable FAIR, Programmatic Access across Large, Diverse Data Collections for High Performance Data Analysis

Ben Evans [☑] ^⑤, Kelsey Druken [☑], Jingbo Wang * [☑], Rui Yang [☑], Clare Richards [☑] and Lesley Wyborn [☑] ^⑤

National Computational Infrastructure, the Australian National University, Acton 2601, Australia

Received: 31 August 2017 / Revised: 1 December 2017 / Accepted: 8 December 2017 / Published: 13 December 2017

^{*} Author to whom correspondence should be addressed.

Supporting Enhanced Features?

netCDF4 enhancements with HDF5

- Grouping:
 - allows users to group variables together with parent variables.
 - works with OPeNDAP but causes issues with other services
- Ragged Arrays (variable length arrays):
 - can be stored with HDF5 but ragged arrays don't work with other services.
 - did not work in Hyrax.

Are others experiencing similar issues on THREDDS? Is there more interest in using these advanced features?

Discussion Topics

- VERSION: Current THREDDS production version at NCI is 4.6.10:
 - Includes OPeNDAP DAP 2.0.
 - What versions are currently being used? (e.g., Hyrax has DAP 4.0)
- AUTHORISATION: NCI currently does not have general authorization for THREDDS services but its on our 2019 roadmap.
 - Known issues with both identity and authorization systems for programmatic access.
 - Some tools don't support modern web2.0 enabled libraries.
 - What authorization should be in place that works internationally and with all software?
- AGGREGATIONS: Success using time aggregation but not for lat/lon aggregates a shortcoming in many domains.
 - Have other institutions investigated and had success with using aggregations?
- PERFORMANCE: We have a diverse range of users (10K+ per quarter) and we record performance metrics in our DQS
 - Many cases are now recorded through our Data Quality Strategy records and most perform very well.
 - Improving the service is dependent on users providing specific feedback on any issues experienced.
 - We experience performance issues in some cases.
 - Some cases are known deficiencies in the software/server and where possible we have developed alternatives.
 - Other performance issues are data issues.

nci.org.au

Acknowledgements

OPENDAP at CSIRO (Robert Davy)