Gravitational Wave Astronomy in the Era of Big Data

Dr Kendall Ackley1

1Monash University/OzGrav, Murrumbeena, Australia, 


The uniquely sensitive Laser Interferometric Gravitational-Wave Observatory (LIGO) facilities have begun routinely detecting signal traces from distant massive black hole and neutron star mergers, some of which happened hundreds of millions of years ago. Representing a multi-layered data analysis problem for real-time and offline analyses, with the aid of computing clusters around the world, successful attempts to extract minute gravitational wave signatures from detector noise have become reality.

On 17 August 2017, LIGO detected its first signal from less massive objects thought to be neutron stars, reinforced by the observation of a coincident weak gamma-ray burst by the Fermi satellite.  Neither instrument has good spatial resolution, and with LIGO being an all-sky instrument, the challenges for astronomers to find the single light-emitting source amongst billions of objects in the sky that is associated with a particular event is not to be understated. Thus began a race of astronomical facilities around the world to be the first to detect the electromagnetic counterpart signal of the event.

The fact that the source was detected within hours of the first alert on the first ever occasion established and validated the field of multi-messenger gravitational wave astronomy, which had been a growing initiative, practically overnight. I will give insights into how this feat was accomplished and, as we begin to build larger and more sensitive telescopes, how we plan to manage the massive in-flux of nightly data, and how we utilise machine-learning to help us accomplish the most data-intensive tasks in an automated fashion.


Dr Kendall Ackley has been a member of the LIGO Scientific Collaboration since 2012. She joined the School of Physics and Astronomy at Monash University in 2017 as part of the ARC Centre of Excellence (OzGrav) working on identifying optical counterparts to gravitational-wave events with the Gravitational-wave Optical Transient Observer (GOTO) telescope. Her research interests include optimising follow-up studies for detecting coincident gravitational-wave and electromagnetic counterpart events, searches for gravitational waves from massive compact binaries, and utilising machine-learning algorithms to identify high-energy astrophysical transients which may accompany gravitational-wave events discovered with LIGO.

Recent Comments