

Challenges of Real-time Processing in HPC Environments – the ASKAP experience

Eric Bastholm | Team Leader 19 October 2017

CSIRO ASTRONOMY AND SPACE SCIENCE

SAND ST ACE SCIENCE

UNITED STATES SCIENCE

CSIRCE

Outline

- Australian SKA Pathfinder (ASKAP)
- Some specific computing challenges encountered
 - Disk Performance
 - Application Performance
 - Process Isolation
- Lessons learned
- Takeaways

ASKAP:

Australian Square Kilometre Array Pathfinder

ASKAP

- 36-antenna interferometer
- Located in radio quiet zone "outback"
- Supercomputer for data processing
- 10,000 cores, 4 GB/core, 200 TFLOPs Peak
- Data Ingest ~ 2.8 GB/s = ~ 10 TB/h
- Cyclic disk buffer, deleting data post processing
- 5 PB data products per year

image credit: Alex Cherney / terrastro.com

ASKAP

Computing Challenges:

Computing Challenges

- Disk performance
- Application performance (memory and messaging)
- Process isolation

Computing Challenges

Computing Challenges: Disk Performance

- High performance parallel Lustre file system
- 1 PB designed for high throughput (10 GB/s)
- Single thread performance not so much
- Performance can vary a lot depending on
 - Other users
 - System parameters
 - Legacy code (non-parallel)

Computing Challenges: Application Performance

Application Performance

- Locking in messaging (MPI) code between parallel processes
- Low memory transfer rate
- Causes buffer overruns
- Lost data
- Write more files from separate processes

Application Performance

Application Performance

Computing Challenges: Process Isolation

Process Isolation

- Isolate the critical processes as much as possible
- Dedicate resources they need
- Control read/write access to disk
- Reduce OS jitter by minimising installed image
- Pure isolation not possible in a shared environment

Process Isolation

Lessons Learned:

Lessons Learned

- Don't assume that the platform is infallible just because it's high tech, BIG, and FAST
- Identify possible performance issues
- Prototype at a granularity necessary to enable the important design decisions – walk before you try to run
- Use realistic data sets
- Establish good working relationship with the platform providers
- Develop monitoring and reporting early
- Develop good testing early

Takeaways:

3 Takeaways

- Prototype and integrate often, don't implement final solution in one leap
- Monitor everything
- Work with platform provider make them part of the team

We acknowledge the Wajarri Yamatji people as the traditional owners of the Observatory site.

Thank you

CSIRO Astronomy and Space ScienceEric Bastholm
Team Leader ASKAP SDP

- **t** +61 8 6436 8505
- e eric.bastholm@csiro.au
- w www.csiro.au/Research/Astronomy

CSIRO ASTRONOMY AND SPACE SCIENCE

www.csiro.au

Credit: Alex Cherney / CSIRO