

Materials Data Facility: A Distributed Model for the Materials Data Community

Logan Ward¹ (loganw@uchicago.edu)

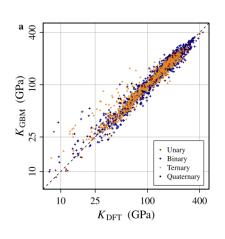
Ben Blaiszik¹,² (blaiszik@uchicago.edu),
lan Foster (foster@uchicago.edu)¹,², Ryan Chard²

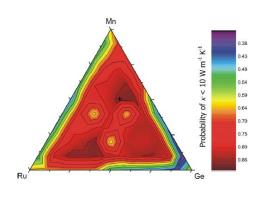
Jonathon Gaff¹, Kyle Chard¹, Jim Pruyne¹,
Rachana Ananthakrishnan¹, Steven Tuecke¹

Michael Ondrejcek³, Kenton McHenry³, John Towns³

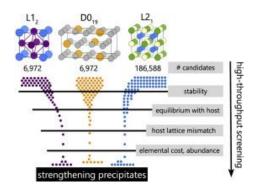
University of Chicago¹, Argonne National Laboratory², University of Illinois at Urbana-Champaign³

materialsdatafacility.org Materials Genome Initiative globus.org

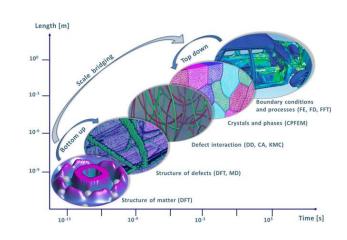



Data-Intensive Materials Science

Materials Databases



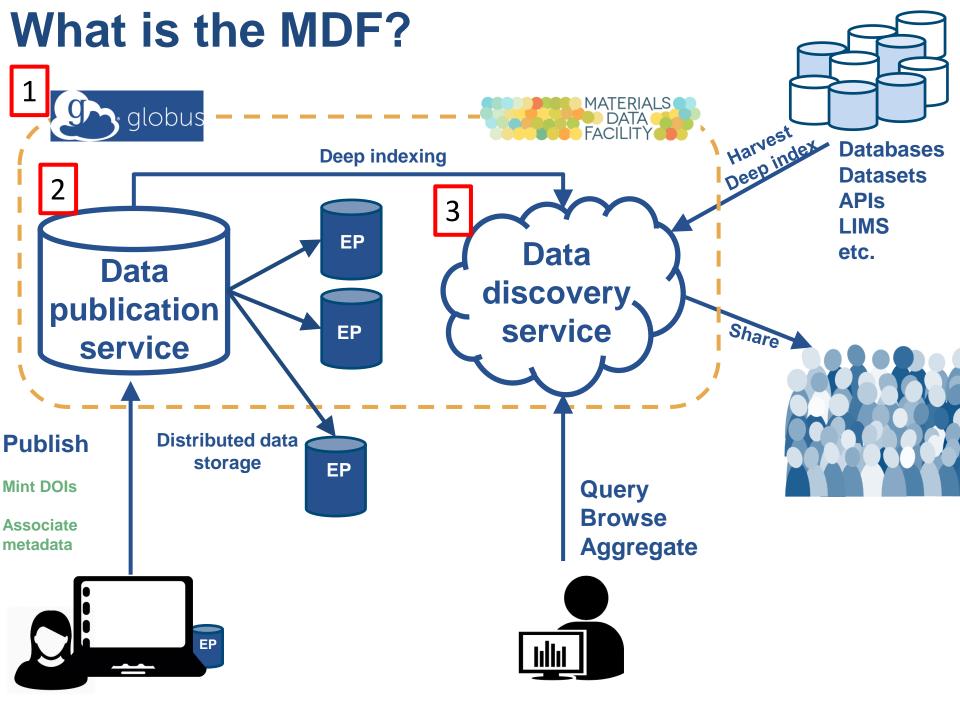
Machine Learning



High-Throughput Screening

Kirklin et al. Acta Mat. (2016)

Multi-scale Modeling

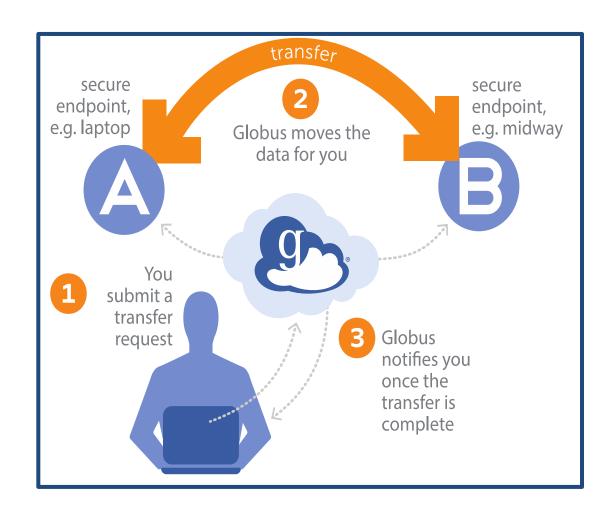

https://www.mpg.de/

Data-Intensive Materials Science

Science is becoming limited by the ability to handle data

- Where to get it?
- How to selectively share it?
- Where to store it?
- How to know what it is?
- How to build software that uses it?
- How to get others to share theirs?
- How to keep track of provenance?
-?

Our goal is to create infrastructure that provides easy answers to these questions


Globus Background

Endpoint

- E.g. laptop or server running a Globus client (e.g. Dropbox client)
- Enables advanced file transfer and sharing
- Currently GridFTP, future GridFTP + HTTP

Some Key Features

- REST API for automation and interoperability
- Web UI for convenience
- Optimizes and verifies transfers
- Handles auto-restarts

Globus Platform-as-a-Service (PaaS)

Identity management

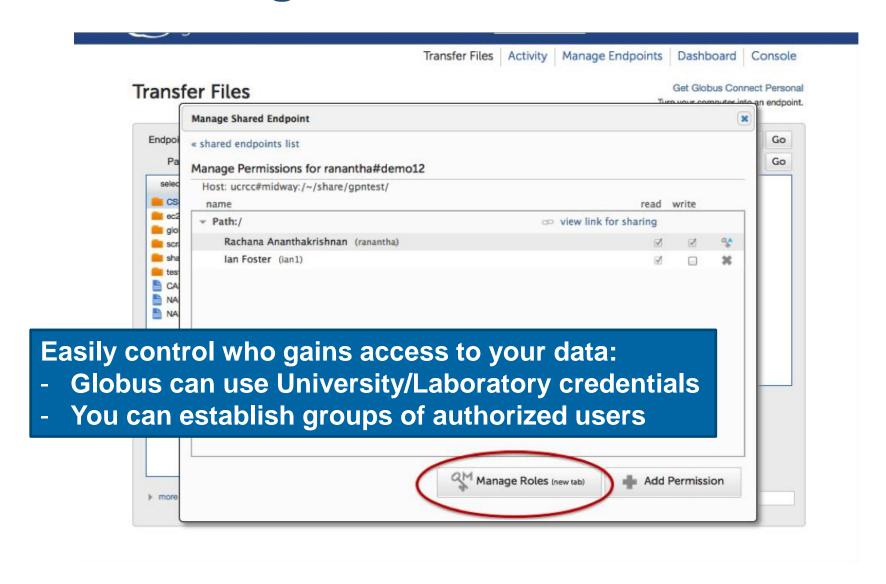
 create and manage a unique identity linked to external identities for authentication

Publication

Data transfer

- High-performance data transfer from a web browser
- Optimize transfer settings and verify transfer integrity
- Add your laptop to the Globus cloud with Globus Connect Personal

User groups


- Manage user group creation and administration flows
- Share data with user groups

Discovery

Data sharing

- Share directly from your storage device (laptop or cluster)
- File and directory-level ACLs

Data sharing and Globus

REST APIs, Clients, and Docs

- New Python SDK available
 - https://github.com/globusonline/globus-sdk-python
- Jupyter Notebook Examples
 - https://github.com/globus/globus-jupyter-notebooks
- Sample Data Portal
 - https://github.com/globus/globus-sample-data-portal
- (alpha) MDF Data Publication Service API

Endpoint search

Globus has over 8000 registered endpoints. To find endpoints of interest you can access powerful search capabilities via the SDK. For example, to search for a given string across the descriptive fields of endpoints (names, description, keywords):

```
search_str = "Globus Tutorial Endpoint"
endpoints = tc.endpoint_search(search_str)
print("==== Displaying endpoint matches for search: '{}' ===".format(search_str))
for ep in endpoints:
    print("{} ({})".format(ep["display_name"] or ep["canonical_name"], ep["id"]))
```

Restricting search scope with filters

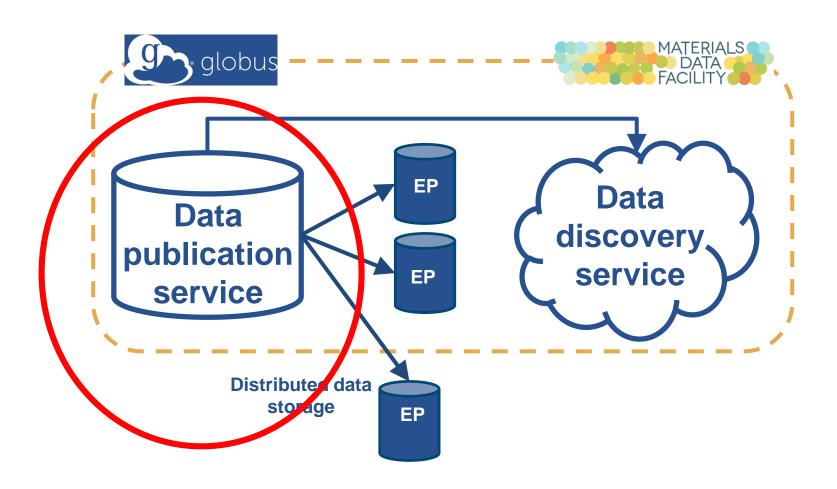
There are also a number of default filters to restrict the search for 'my-endpoints', 'my-gcp-endpoints', 'recently-used', 'lin-use', 'shared-by-me', 'shared-with-me')

```
search_str = None
endpoints = tc.endpoint_search(
    filter_fulltext=search_str, filter_scope="recently-used")
for ep in endpoints:
    print("{} ({})".format(ep["display_name"] or ep["canonical_name"], ep["id"]))
```

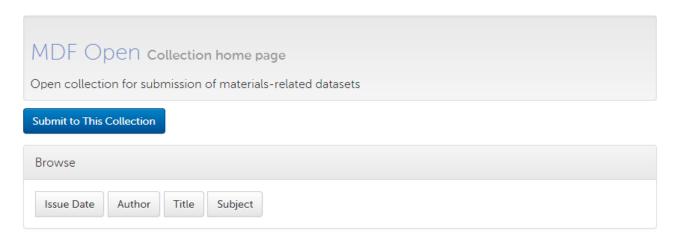
Endpoint details

You can also retrieve complete information about an endpoint, including name, owner, location, and server configurations.

```
endpoint = tc.get_endpoint(tutorial_endpoint_1)
print("Display names", endpoint("display name"))
print("Owner:", endpoint("owner_string"))
print("ID:", endpoint["id"])
```


Transfer

Creating a transfer is a two stage process. First you must create a description of the data you want to transfer (which also creates a unique submission id), and then you can submit the request to Globus to transfer that data.


If the submit_transfer fails, you can safely resubmit the same transfer_data again. The submission_id will ensure that this transfer request will be submitted once and only once.

```
# help(tc.submit_transfer)
source endpoint id = tutorial endpoint 1
source path = "/share/godata/
dest endpoint id = tutorial endpoint 2
dest path = "/~/"
label = "My tutorial transfer"
# TransferData() automatically gets a submission id for once-and-only-once submission
tdata = globus_sdk.TransferData(tc, source_endpoint_id,
                                dest endpoint id,
                                label=label)
## Recursively transfer source path contents
tdata.add_item(source_path, dest_path, recursive=True)
## Alternatively, transfer a specific file
# tdata.add_item("/source/path/file.txt",
                 "/dest/path/file.txt"))
# Ensure endpoints are activated
tc.endpoint autoactivate(source endpoint id)
tc.endpoint autoactivate(dest endpoint id)
submit_result = tc.submit_transfer(tdata)
print("Task ID:", submit_result["task_id"])
```

DATA PUBLICATION

Materials Data Publication Service

Datasets in Collection (sorted by Submit Date in Descending order): 1 to 20 of 25 next >

Issue Date	Title	Author(s)
22-Sep-2017	Dataset for A New Generation of Effective Core Potentials for Correlated Calculations	Bennett, M. Chandler; Melton, Cody A.; Annaberdiyev, Abdulgani; Wang, Guangming; Shulenburger, Luke; Mitas, Lubos
11-Sep-2017	Probing the growth and melting pathways of a decagonal quasicrystal in real-time	Han, Insung; Xiao, Xianghui; Shahani, Ashwin J.
6-Sep-2017	Simulated microstructures of gamma' precipitates in cobalt-based superalloys	Jokisaari, Andrea M.; Naghavi, Shahab; Wolverton, Chris; Voorhees, Peter W.; Heinonen, Olle G.
23-Aug-2017	Solute transport database in Mg using ab initio and exact diffusion theory	Agarwal, Ravi; Trinkle, Dallas R.
29-Jun-2017	Characterizing the Unifying Thread in High Temperature Superconductors Using Realistic Simulations	Narayan, Awadhesh; Busemeyer, Brian; Wagner, Lucas K.

10

Datasets Are Citable

Title 1–20	Cited by	Year
Implications of Grain Size Variation in Magnetic Field Alignment of Block Copolymer Blends Y Rokhlenko, PW Majewski, SR Larson, P Gopalan, KG Yager, CO Osuji American Chemical Society		2017
X-ray Scattering Image Classification Using Deep Learning B Wang, K Yager, D Yu, M Hoai Applications of Computer Vision (WACV), 2017 IEEE Winter Conference on, 697-704	1	2017
Dataset of synthetic x-ray scattering images for classification using deep learning KG Yager, J Lhermitte, D Yu, B Wang, Z Guan, J Liu Materials Data Facility	1	2017
Magnetic field alignment of coil-coil diblock copolymers and blends via intrinsic chain anisotropy Y Rokhlenko, P Majewski, S Larson, K Yager, P Gopalan, A Avgeropoulos, Bulletin of the American Physical Society 62		2017

Publication statistics

Data Volumes

15.0 TB 13.4 TB out

Publication

50

Total datasets

94

Authors Institutions

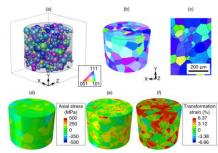
14

16

CHiMaD datasets

>1000

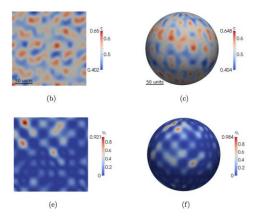
Accesses


Pipeline

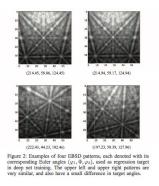
+30
Total
datasets

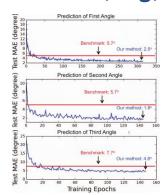
+14
CHiMaD
datasets

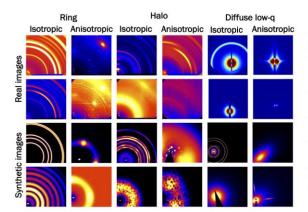
Publication Route #1: MDF Storage


Grain Structure, Grain-averaged Lattice Strains, and Macro-scale Strain Data for Superelastic Nickel-Titanium Shape Memory Alloy Polycrystal Loaded in Tension

 Largest dataset to date (>1.5 TB). Showcases MDF unique capabilities and makes a unique dataset discoverable for code development, analysis, and benchmarking

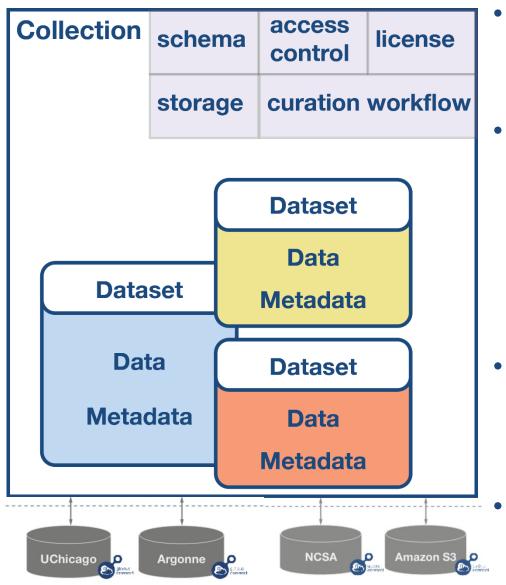

Paranjape et al.


Phase Field Benchmark I Dataset


Jokisaari et al.

Electron Backscattering and Diffraction Datasets for Ni, Mg, Fe, Si

X-ray Scattering Image Classification Using Deep Learning


layer name	output size	kernels	
conv1	112×112	7×7, 64, stride 2	
	56×56	3×3 max pool, stride 2	
conv2_x		$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	
conv3_x	28×28	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
conv4_x	14×14	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	
conv5_x	7×7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
pooling	1×1	average pooling	
fc	1×1	2048×num of attributes	

Customization: Collection Model

Collections in this community

APS Sector 1 Collection of datasets from Argonne National Labora	om Sector 1 at the Advanced Photon Source at atory
CHiMaD Team	
Citrine Test	
Hersam Group	
MDF Open MDF Open Collection	
MDF Test Test Collection for MDF	
Voorhees Group	

Customization: Collection Model

- Collections might be a research group or a research topic...
- Collections have specified
 - Mapping to storage endpoint
 - Currently handled as automatically created shared endpoints
 - Metadata schemas
 - Access control policies
 - Licenses
 - Curation workflows
- Collections contain
 - Datasets
 - Data
 - Metadata
 - **Metadata Persistence**
 - Metadata log file with dataset
 - Metadata replicated in search inde

Share Data with Flexible ACLs

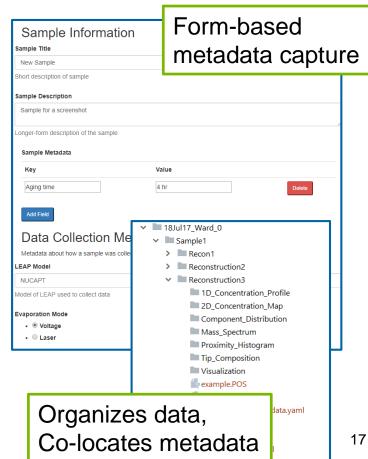
Share data publicly, with a set of users, or keep data private

Leverage Curation Workflows

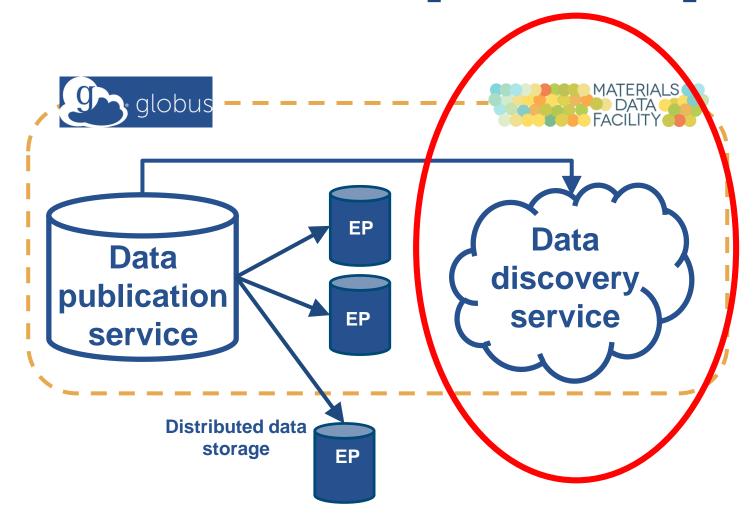
- Collection administrators can specify the level of curation workflow required for a given collection e.g.
 - No curation
 - Curation of metadata only
 - Curation of metadata and files

Example: NUCAPT Data Publication

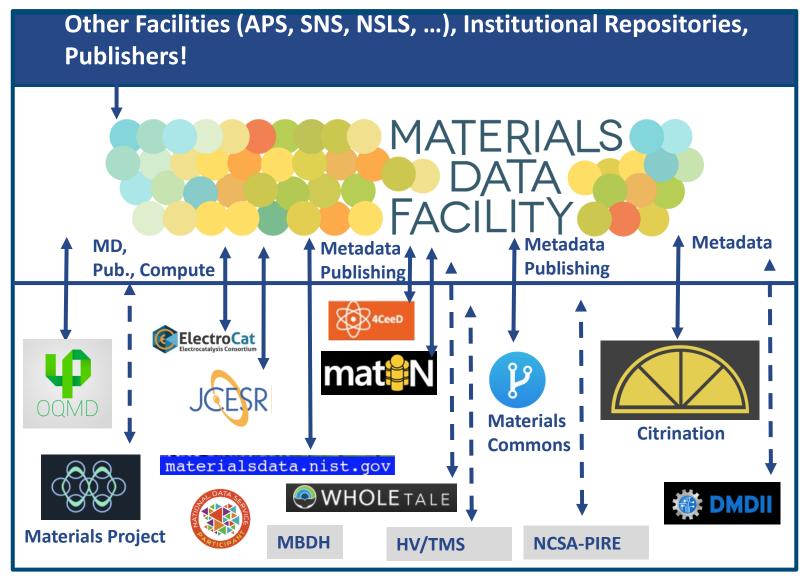
Goal:


- Aid metadata capture
- Simplify data publication

Approach: Lightweight web service

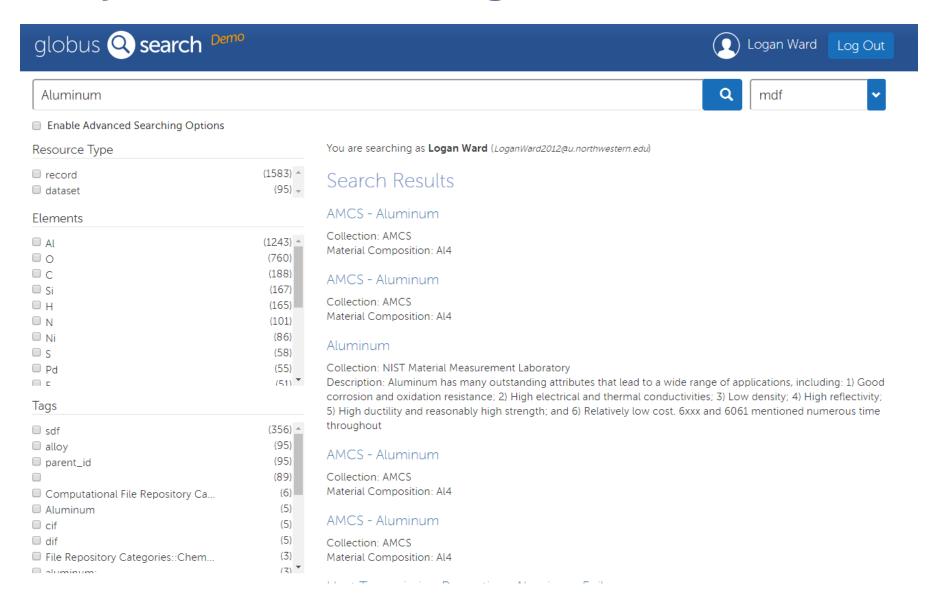

- Form-based metadata capture
- Automatic file management
- "One-click" data publication

Results:


- Beta version deployed Sept '17

DATA DISCOVERY [AND USE]

Part 1: Linking with the Data Community



Many Databases, Single Search

MDF + NIST Database Tools

Data discovery service

NIST MRR

Querying Nanomine Data

Example using the Materials Data Facility to query data from NanoMine

In [1]: from mdf_forge.forge import Forge

Get All Records

Get all of the records in NanoMine

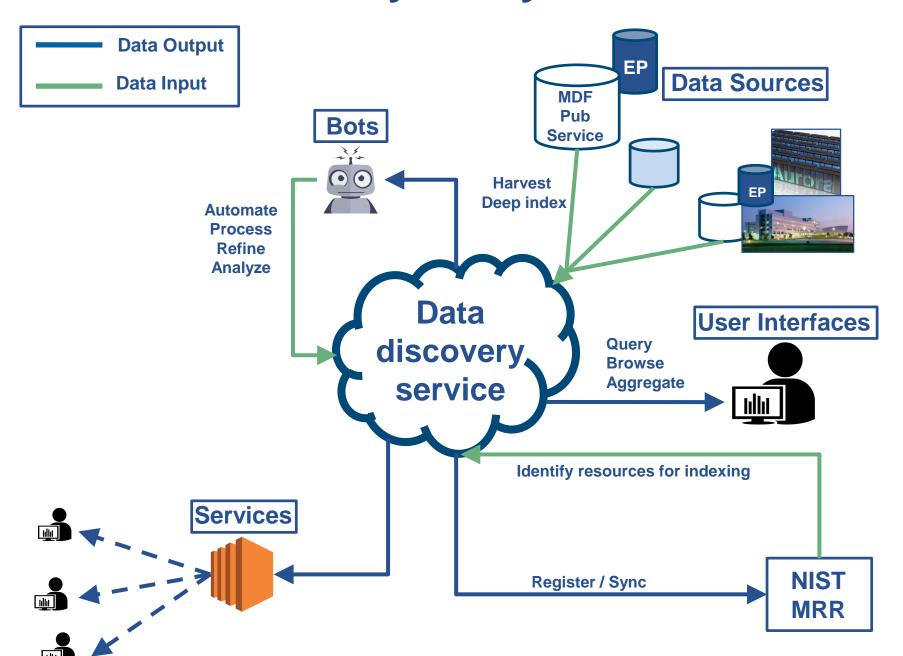
MDF automates publicizing data and provides a uniform search interface

```
In [2]: forge = Forge()
```

In [3]: data = forge.search('mdf.source_name=nanomine AND mdf.resource_type=record', advanced=True)

```
In [4]: print('Found %d records in NanoMine'%len(data))
```

Found 227 records in NanoMine


Get Records with Olefin Matrices

Example of a more-complex query

In [6]: print('Found %d olefin records'%len(data))

Found 6 olefin records

MDF data discovery ecosystem

Summary

Three Major Components of Materials Data Facility

1. Globus

- High speed data transfer
- Easy data sharing

2. Data Publication Service

- Simple data publication, from your own
- Free data publication

3. Data Discovery Service

- Single search engine for many materials databases
- Python API for accessing these databases

Thanks to our sponsors!

