

Progress Toward Exascale Computing

Mike Vildibill

VP Advanced Technologies & Exascale Development October 2017

Exascale in our daily life

The Digital Twin

Exemplifies the Insatiable Demand for Affordable and Accessible Computing

Digital twin refers to a **digital** replica of physical assets, processes and systems that can be used for various purposes. The **digital** representation provides both the elements and the dynamics of how an Internet of Things device operates and lives throughout its life cycle.

Digital twin - Wikipedia https://en.wikipedia.org/wiki/Digital_twin

What Is Exascale?

–One quintrillion

-10**18

-1,000,000,000,000,000

-1 billion * 1 billion

-1 Peta * 1,000

In FLOPs, the sum of all Top500 HPC systems today

If a single calculation is represented by a single piece of paper, then a quintrillion pieces of paper would amount to a stack of papers as tall as...

65,000 round trips to the moon

How do we meet the exascale challenge?

20-30 MW

Exascale is a Global Race

U.S.

- Sustained: 2023

- Peak: 2020-21

- Vendors: U.S.

Processors: x86 and ARM

Initiatives: NSCI, ECP

Cost: \$250-300M

EU

- Sustained: 2023-24

- Peak: 2021

Vendors: U.S.,Europe

Processors: x86 and ARM

Initiatives: PRACE, ETP4HPC

- Cost: \$300-\$350

China

- Sustained: 2023

- Peak: 2020

- Vendors: China

Processors: China, x86, ARM

Initiatives: 13th 5-Year Plan

Cost: \$350-500M

Japan

- Sustained: 2023-24

Peak: Not planned

- Vendors: Japan

Processors: ARM,Japan

Initiatives: MEXT

- Cost: \$600-800M

Source: Hyperion Research (IDC)

Scale of Computation is Inevitable

Exascale Must Return Us to Reasonable System Balance

HPE's architecture objective: reignite progress in large scale HPC

Balance + Scale is Really Difficult

- Bandwidth & capacity as a function of computation, at large scale, is difficult and expensive
- The system balance ratios continue to drop as systems have become laden with accelerators; this is great for some applications and not so great for others
- The system balance required in many Enterprise environments far exceed HPC systems
- Exascale technology advancements will address the challenges faced broadly across the entire Enterprise market

More scalability, less power, more bandwidth... while data movement consumes >10x more power than computation in future

From processor-centric computing to Memory-Driven Computing

What is a "Memory Semantic" fabric?

- A communication protocol that speaks the same language of the CPU ISA: load and store, puts and gets, and atomic operations
- Today's storage or network accesses are block based and managed by complex, code intensive, software stacks
- Memory semantics are optimal at random accesses, zero-copy, sub-microsecond operations, directly to CPU caches and registers

Gen-Z Broad Industry and Device Support Ecosystem

Components Intellectual Property Connectors Subsystems Systems Software

Gen-Z Breaks Processor-Memory Interlock

A "split controller" model

- Memory controller (gets simplified)
 - –Initiates high-level requests—Read, Write, Atomic, Put / Get, etc.
 - -Enforces ordering, reliability, path selection, etc.
 - -Memory semantic protocol routable over networks
- Media controller (handles the media specific detail)
 - Abstracts memory media
 - -Supports volatile / non-volatile / mixed-media
 - -Performs media-specific operations
 - -Enables data-centric computing (accelerator, compute, etc.)
 - -Enables open ecosystem for memory/storage and I/O

DDR, PCIe, SAS, SATA and other dedicated pins on the CPU package replaced with Gen-Z pins, providing greater configurability

Gen-Z's Serial Links Make More Efficient Use of Pins

30x more bandwidth than DDR4 with fewer pins

Pin Type	Color	Count
DDR Signals	Blue	660
DDR Power	Red	58
DDR Ground	Green	342
DDR Total		1060
PCIe Data	Violet	192
PCIe Ground	Green	120
PCIe Total		312
Proprietary	Dark Red	175
Proprietary Ground	Green	110
Proprietary Total		285
PCH/Power/Ground/Misc	Orange/G reen	354
Grand Total		2011

HPE Exascale strategy centered around Gen-Z

High Bandwidth Low Latency

- Memory Semantics simple Reads and Writes
- From tens to several hundred GB/s of bandwidth
- Sub-100 ns load-to-use memory latency

Advanced Workloads & Technologies

- Real time analytics
- Enables data centric and hybrid computing
- Scalable memory pools for in memory applications
- Abstracts media interface from SoC to unlock new media innovation

Secure Compatible Economical

- Provides end-to-end secure connectivity from node level to rack scale
- Supports unmodified OS for SW compatibility
- Graduated implementation from simple, low cost to highly capable and robust
- Leverages high-volume IEEE physical layers and broad, deep industry ecosystem

"The Machine" Project

Nov 2016: Building blocks demo'd
Compute, Memory, Fabric, Switch
May 2017: 160 TiB 40-node prototype
Jun 2017: The Machine user group +
PathForward announcement

- Compute nodes accessing a shared pool of Fabric-Attached Memory;
- An optimized Linux-based operating system on a ARM-based SoC (Cavium Thunder-X2)
- Optical communication links, including the new X1 photonics module online and operational
- New software programming tools designed to take advantage of abundant persistent memory

https://www.labs.hpe.com/the-machine/user-group https://www.labs.hpe.com/the-machine/developer-toolkit

MEMORY FABRIC SWITCH

Enables processors to access Fabric-Attached Memory across any node on the system.

TASK-SPECIFIC PROCESSING

Flexible Memory-Driven Computing architecture can match compute tasks to different types of processor to optimize performance and efficiency.

PHOTONICS INTERCONNECTS

Rapidly transfers data between enclosures with light instead of electricity to access shared memory.

MEMORY AT THE CENTER

Combines memory and storage into a vast pool of Fabric-Attached Memory to radically increase computing efficiency and speed by enabling multiple processors to share memory.

High-speed
High-density
Small form factor
Low power
Low cost
VCSEL
optics

Department of Energy

Department of Energy Awards Six Research Contracts Totaling \$258 Million to Accelerate U.S. Supercomputing Technology

JUNE 15, 2017

DOE PathForward Goals

High Level Approach

- Close gaps in vendor's technology roadmaps or accelerate time to market to address ECP performance targets
- Provide an opportunity for Application Development and Software Technology to influence the design of future node and system architecture designs
- Deliver hardware technology analysis and (where appropriate), demonstrations to increase confidence in node and system design performance benefit, programmability and ability to affect a 2019 Exascale System RFP

Goals

- Ensure that laboratory platform acquisition teams have quantitative information to identify the most promising technology options to include in the 2019 Exascale System RFP
- Improve vendor's confidence in the value and feasibility of aggressive advanced technology options that they may propose for 2019 Exascale System RFP

5 Exascale Computing Project: Hardware Technology

Exascale systems require a new scalable and balanced architecture

Exascale Requirements

Scalability

10x greater performance than today's largest systems

Productivity

Increase system utilization by 6x

Power

20-30
megawatts
of power
consumption
(10x more
efficient than
today)

Resiliency

failure reduced to <= 1week

Applications

Optimized for a broad spectrum of workloads

Example: Why are Better Photonics Needed?

Today's active optical cables

- Discrete components
- \$1,000 for 100Gbps, at 4W(\$10/Gbps, 40 pJ/bit)
- At Exascale: ~\$1B and >10MW (only the cables!)

Silicon Photonics

- Integrated CMOS and Photonic ICs
- Target: 100x lower cost, 10x lower energy

Gen-Z and The Machine → Exascale

Open
Memory Semantics
Gen-Z Fabric

Improve
Data Movement
Efficiency

Fabric-attached non-volatile memory

Improve Resilience and System efficiency

Silicon Photonics Improve Energy and Cost efficiency

HPE Exascale Architecture Innovation infrastructure optimized for running a broad range of applications

Design Tenets Technology Improvements Improve Latency Improved scalability and application performance at scale Increase bandwidth - Reduced data movement at scale Less hardware specific optimization and tuning **Improve Resilience and System efficiency** Optimize system model (One address space for memory and storage) Silicon Photonics for low latency and reducing data movement at scale Improved energy efficiency Power efficient electronics and reduced cost **4** Intelligent throttling based on electricity/rate

Optimized for a broad range of applications with minimum customization

Notional Exascale System: 2020 - 2022

Notional Board

4 sockets / 1 node 60 - 90 TFLOPS 0.3 - 0.6 TB HBM 10 - 18 TB/s memory BW 0.6 - 1.2 TB/s network BW 1,500 - 1,700 W

Notional Chassis

8 trays/16 nodes 64 sockets / 16 routers 1 – 1.4 PFLOPS 4.8 – 9.6 TB HBM 160 - 288 TB/s Memory BW 9 – 19 TB/s Network BW 30 – 35 kW

Notional Rack

4 chassis / 32 trays / 64 nodes 256 sockets / 64 routers 4 – 5.6 PFLOPS 19 - 38 TB HBM 0.6 – 1.1 PB/s Memory BW 36 - 76 TB/s Network BW 120 – 140 kW / 100% Liquid-Cooled

Exascale R&D is Addressing Enterprise Challenges of the Future

Faster to result

More scalable

Faster to program

More reliable

More compact

More cost-efficient

More energy-efficient

More secure

Thank You