Achieving FAIR data with Figshare
Happy #OAWEEK19
Happy #OAW2019

Show years 2010 to 2019

- Chart
- Table

Publications (total)
Publications in 2019
16,771 publications
Show publications
<table>
<thead>
<tr>
<th>Organization</th>
<th>Country</th>
<th>Publications</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Queensland (UQ)</td>
<td>Australia</td>
<td>553</td>
</tr>
<tr>
<td>Australian National University (ANU)</td>
<td>Australia</td>
<td>510</td>
</tr>
<tr>
<td>University of Melbourne</td>
<td>Australia</td>
<td>502</td>
</tr>
<tr>
<td>UNSW Sydney (UNSW)</td>
<td>Australia</td>
<td>417</td>
</tr>
<tr>
<td>University of Sydney (USYD)</td>
<td>Australia</td>
<td>404</td>
</tr>
<tr>
<td>University of Western Australia (UWA)</td>
<td>Australia</td>
<td>396</td>
</tr>
<tr>
<td>Monash University</td>
<td>Australia</td>
<td>377</td>
</tr>
<tr>
<td>James Cook University (JCU)</td>
<td>Australia</td>
<td>295</td>
</tr>
<tr>
<td>Macquarie University</td>
<td>Australia</td>
<td>283</td>
</tr>
<tr>
<td>University of Adelaide</td>
<td>Australia</td>
<td>250</td>
</tr>
<tr>
<td>Australian Research Council (ARC)</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>European Commission (EC)</td>
<td>Belgium</td>
<td></td>
</tr>
<tr>
<td>Directorate for Biological Sciences (NSF BIO)</td>
<td>United States</td>
<td></td>
</tr>
<tr>
<td>Natural Environment Research Council (NERC)</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>National Health and Medical Research Council (NHM...</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>European Research Council (ERC)</td>
<td>Belgium</td>
<td></td>
</tr>
<tr>
<td>Natural Sciences and Engineering Research Council (...)</td>
<td>Canada</td>
<td></td>
</tr>
<tr>
<td>Department of Education and Training (DET-Au)</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>National Natural Science Foundation of China (NSFC)</td>
<td>China</td>
<td></td>
</tr>
<tr>
<td>Swiss National Science Foundation (SNF)</td>
<td>Switzerland</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1: Should funders withhold funding from (or penalize in other ways) researchers who do not share their data if the funder mandated that they should?
Open Science

This is the ongoing transition in how research is performed and how knowledge is shared. News, events, publications related to Open Science

EU could save €10.2 billion per year by using FAIR data. Which funding and business models can make FAIR data sustainable?
President Trump today signed into law the **Open, Public, Electronic and Necessary (OPEN) Government Data Act**, a sweeping, government-wide mandate requiring U.S. federal agencies to publish all non-sensitive government information – including federally-funded research – as open data.
Data submitted to NIH Figshare will be reviewed to ensure there is no personally identifiable information in the data and metadata prior to being published and made discoverable. Review will also ensure the data and metadata are findable, accessible, interoperable, and reusable – or aligned with the FAIR principles.
Discover research from the National Institutes of Health

Angiogenesis array data for “Identification of a pro-angiogenic ...”
Sarika Sanswasti
19/06/2019

Decomposed matrices used for the analysis described in ‘Component ...”
Yosuke KAgehara
01/06/2019

X-ray scattering curves (SAXS/WAXS) used for the analysis...”
James Fraser
31/07/2019

Dietary fatty acids fine-tune Piazo1 mechanical response”
Luis O. Romero
03/04/2019
Technology and Expertise
Calculator + figshare = FAIRFA
F2 data are described with rich metadata

Bay of Islands Bottlenose Dolphin Catalogue photos

This catalogue is a collection of uniquely identified bottlenose dolphin dorsal fin photos from the Bay of Islands, New Zealand 1993-2013. Where possible there is a right and left side image of each dorsal fin.

The photograph codes are as follows:
BOI = Bay of Islands
XXX = unique number for each dolphin
RS/LS = right side/ left side

All work was conducted by researchers at the University of Auckland and the catalogue is curated by Dr Rochelle Constantine, University of Auckland (r.constantine@auckland.ac.nz). Please contact Rochelle if you have any queries.

REFERENCES
* https://mmeg.wordpress.foss.auckland.ac.nz

PUBLISHER (E.G. UNIVERSITY OF AUCKLAND)
University of Auckland

CONTACT EMAIL
r.constantine@auckland.ac.nz

SPATIAL COVERAGE (E.G. KERMADEC ISLAND)
Bay of Islands, New Zealand

CATEGORIES
* Zoology
* Marine Biology

KEYWORD(S)
* bottlenose dolphin
* photo-identification

LICENSE
CC BY-NC-SA 4.0

EXPORT
RefWorks
BibTeX
Ref. manager
Mendeley
Angiogenesis array data for “Identification of a pro-angiogenic functional role for FSP1-positive fibroblast subtype in wound healing”

Version 2 Dataset posted on 15.08.2019, 15:31 by Sarika Saraswati, Lester A Watch, Stephanie MW Marrow

Abstract

Fibrosis accompanying wound healing can drive the failure of many different organs. Activated fibroblasts are the principal determinants of post-injury pathological fibrosis along with physiological repair, making them a difficult therapeutic target. Although activated fibroblasts are phenotypically heterogeneous, they are not recognized as distinct functional entities. Using mice that express GFP under the FSP1 or cSMA promoter, we characterized two non-overlapping fibroblast subtypes from mouse hearts after myocardial infarction. Here, we report the identification of FSP1-GFP+ cells as a non-pericyte, non-hematopoietic fibroblast subpopulation with a predominant pro-angiogenic role, characterized by in vitro phenotypic/cellular/ultrastructural studies and in vivo granulation tissue formation assays combined with transcriptomics and proteomics. This work identifies a fibroblast subtype that is functionally distinct from the pro-fibrotic cSMA-expressing myofibroblast subtype. Our study has the potential to shift our focus towards viewing fibroblasts as molecularly and functionally heterogeneous and provides a paradigm to approach treatment for organ fibrosis.

Angiogenesis protein array

The Proteome Profiler Mouse Angiogenesis Array Kit (# ARY015; R & D) was used to assess the relative levels of 53 mouse angiogenesis-related proteins in 300 µg of FSP1+ and cSMA+ cell lysates according to manufacturer’s instructions. Angiogenesis Array is a membrane-based sandwich immunoassay. The cells were cultured for 72 hr in 0.5% FBS prior to protein collection. Briefly, a cocktail of biotinylated detection antibodies was mixed with cell lysates. The array membrane was then treated with the cell lysate and antibody mixture overnight at 4 °C, washed, and then incubated with streptavidin-HRP. The array membrane is spotted with capture antibodies to specific target proteins. The captured proteins were visualized using chemiluminescence.
Identifying Technology Gaps
F3 (meta)data are registered or indexed in a searchable resource

<table>
<thead>
<tr>
<th>Type</th>
<th>Indexed in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datasets</td>
<td>Google Dataset Search</td>
</tr>
<tr>
<td></td>
<td>Datacite</td>
</tr>
<tr>
<td></td>
<td>DataONE</td>
</tr>
<tr>
<td></td>
<td>Dimensions</td>
</tr>
<tr>
<td></td>
<td>OpenAire</td>
</tr>
<tr>
<td></td>
<td>SHARE</td>
</tr>
<tr>
<td></td>
<td>Clarivate Data Citation Index</td>
</tr>
<tr>
<td></td>
<td>PubMed</td>
</tr>
<tr>
<td></td>
<td>National metadata registries eg. Research Data Australia</td>
</tr>
<tr>
<td>Papers</td>
<td>Google Scholar</td>
</tr>
<tr>
<td>Preprints</td>
<td>Google Scholar</td>
</tr>
<tr>
<td></td>
<td>Dimensions</td>
</tr>
<tr>
<td>Theses</td>
<td>Google Scholar</td>
</tr>
<tr>
<td></td>
<td>Networked Digital Library of Theses and Dissertations</td>
</tr>
</tbody>
</table>
Tuning the Collapse Transition of Weakly Charged Polymers by Specific Screening


Lothar Wondraczek + 3 more

Tuning sulfur doping for bifunctional electrocatalyst with selectivity between oxygen and hydrogen evolution in chemistry


Zachary Kendal + 5 more

How do people with mood and anxiety disorders perceive and interpret the Drinking Motives Questionnaire


Margarita Wesenberg + 2 more

Design and Realisation of Better Connected Research IT Support Services
A2 metadata are accessible, even when the data are no longer available
I1 (meta)data use a broadly applicable language for knowledge representation

   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/
   http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:title>Bay of Islands Bottlenose Dolphin Catalogue photos</dc:title>
  <dc:creator>Rochelle Constantine</dc:creator>
  <dc:identifier>10.17608/k6.auckland.5417746.v1</dc:identifier>
  <dc:description>This catalogue is a collection of uniquely identified bottlenose dolphin dorsal fin photos from the Bay of Islands, New Zealand 1993-2013. Where possible there is a right and left side image of each dorsal fin. The photograph codes are as follows: BOI = Bay of Islands, XXX = unique number for each dolphin, RS/LS = right side/ left side. All work was conducted by researchers at the University of Auckland and the catalogue is curated by Dr Rochelle Constantine, University of Auckland (r.constantine@auckland.ac.nz). Please contact Rochelle if you have any queries.</dc:description>
  <dc:date>2017-11-12 22:04:08</dc:date>
  <dc:subject>bottlenose dolphin</dc:subject>
</dc:dc>
Add new custom metadata field
This metadata field will be used by all items within the main institution and will be inherited by it’s groups. Find out more

- Mandatory field

**Title**
Add the name of the field...

**Context**
Select context...

**Visibility**
- Public
- API Only
- Private
- Admin only
- Visible publicly and privately
- Allow users to edit field
- Don’t allow users to edit field
- Regular field
- Advanced field

**Type**
Select field type...

**Helpful info (Tips)**
Add tips... (optional)
I2 (meta)data use vocabularies that follow FAIR principles

<table>
<thead>
<tr>
<th>Number</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>010101</td>
<td>Algebra and Number Theory</td>
</tr>
<tr>
<td>010102</td>
<td>Algebraic and Differential Geometry</td>
</tr>
<tr>
<td>010103</td>
<td>Category Theory, K Theory, Homological Algebra</td>
</tr>
<tr>
<td>010104</td>
<td>Combinatorics and Discrete Mathematics (excl. Physical Combinatorics)</td>
</tr>
<tr>
<td>010105</td>
<td>Group Theory and Generalisations</td>
</tr>
<tr>
<td>010106</td>
<td>Lie Groups, Harmonic and Fourier Analysis</td>
</tr>
<tr>
<td>010107</td>
<td>Mathematical Logic, Set Theory, Lattices and Universal Algebra</td>
</tr>
<tr>
<td>010108</td>
<td>Operator Algebras and Functional Analysis</td>
</tr>
<tr>
<td>010109</td>
<td>Ordinary Differential Equations, Difference Equations and Dynamical Systems</td>
</tr>
<tr>
<td>010110</td>
<td>Partial Differential Equations</td>
</tr>
<tr>
<td>010111</td>
<td>Real and Complex Functions (incl. Several Variables)</td>
</tr>
<tr>
<td>010112</td>
<td>Topology</td>
</tr>
<tr>
<td>010199</td>
<td>Pure Mathematics not elsewhere classified</td>
</tr>
</tbody>
</table>
R1.3 (meta)data meet domain-relevant community standards

<table>
<thead>
<tr>
<th>ID</th>
<th>Property</th>
<th>Obligation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Identifier (with mandatory type sub-property)</td>
<td>M</td>
</tr>
<tr>
<td>2</td>
<td>Creator (with optional given name, family name, name identifier and affiliation sub-properties)</td>
<td>M</td>
</tr>
<tr>
<td>3</td>
<td>Title (with optional type sub-properties)</td>
<td>M</td>
</tr>
<tr>
<td>4</td>
<td>Publisher</td>
<td>M</td>
</tr>
<tr>
<td>5</td>
<td>PublicationYear</td>
<td>M</td>
</tr>
<tr>
<td>10</td>
<td>ResourceType (with mandatory general type description sub-property)</td>
<td>M</td>
</tr>
</tbody>
</table>
Configure crosswalk for DublinCore

**General**
- Title *
- Authors *
- Categories

**Storage**
- Item type

**Metadata**
- Keywords *
- Description *
- Funding
- References
- License

**Roles**
- Please select

**HR feed**
- Please select

**Groups**
- Please select

**Users**
- Please select

**Unpublish**
- Please select

+ Add field  
arrange by: group structure
Online labour index

käsi, otto; Hadley, Martin; Lehdonvirta, Vili (2017): Online Labour Index: Measuring th
Online Gig Economy for Policy and Research. figshare.
https://doi.org/10.6084/m9.figshare.3761562.v299
Retrieved: 14 29, Apr 13, 2017 (GMT)
Rec. 12: Develop metrics for FAIR Digital Objects
A set of metrics for FAIR Digital Objects should be developed and implemented, starting from the basic common core of descriptive metadata, PIDs and access. The design of these metrics needs to be guided by research community practices, and they should be regularly reviewed and updated.

Rec. 13: Develop metrics to certify FAIR services
Certification schemes are needed to assess all components of the ecosystem as FAIR services. Existing frameworks like CoreTrustSeal (CTS) for repository certification should be used and adapted rather than initiating new schemes based solely on FAIR, which is articulated for data rather than services.

Rec. 25: Implement FAIR metrics to monitor uptake
Agreed sets of metrics should be implemented and monitored to track changes in the FAIRness of data sets or data-related resources over time. Funders should report annually on the outcomes of their investments in FAIR and track how the landscape matures.
Mark Hahnel
Function: CEO
email: mark@figshare.com
@markhahnel
@figshare